SEM, EDS AND XPS ANALYSIS OF NANOSTRUCTURED COATING FORMED ON NiTi BIOMATERIAL ALLOY BY PLASMA ELECTROLYTIC OXIDATION (PEO)

نویسندگان

  • Krzysztof Rokosz
  • Tadeusz Hryniewicz
  • Steinar Raaen
چکیده

Original scientific paper Plasma Electrolytic Oxidation (PEO) of NiTi alloy was studied in the electrolyte consisting generally of concentrated orthophosphoric acid with an addition of copper II nitrate. The PEO process was used to obtain a nanostructured coating on the Nitinol surface. The surface layer analyses methods, such as scanning electron microscopy (SEM) with the energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS), allowed determining the structure and composition of the most expected coatings and revealing the conditions for obtaining them. It was found that the porous PEO coating obtained in the electrolyte containing copper nitrate in an amount higher than 1,6 mol/L consists mainly of copper-titanium-nickel phosphates. Moreover, in comparison with matrix, the emergence of carcinogenic nickel appearing in the coating fortunately appears in very small quantities, i.e. below 1 at%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate

In the paper, the Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) results of the surface layer formed on pure titanium after plasma electrolytic oxidation (micro arc oxidation) at the voltage of 450 V are shown. As an electrolyte, the mixture of copper nitrate Cu(NO₃)₂ (10-600 g/L) in concentrated phosphoric acid H₃PO...

متن کامل

Improved Oxide-Based Interfacial Coatings for the Next-Generation of CMC’s

CMC's reinforced by SiC-based fibers achieve high toughness and damage tolerance through the disposal of weak fiber coating which can deflect cracks and promote debonding at the fiber/matrix region. Refractory oxide-based systems are considered as the most promising ones for this purpose. Sols of zirconia, including stabilized zirconia were used as simple and readily processable precursors for ...

متن کامل

Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

OBJECTIVE Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. METHODS AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti...

متن کامل

Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon

Cr adsorption on wood-based powdered activated carbon (WPAC) was characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The highest Cr(VI) adsorption (40.04%) was obtained under acidic conditions (pH 3), whereas Cr removal at pH 10 was only 0.34%. The mechanism of Cr(VI) removal from aq...

متن کامل

Investigation of Zinc and Phosphorus Elements Incorporated into Micro-Arc Oxidation Coatings Developed on Ti-6Al-4V Alloys

In order to clarify the mechanism that zinc and phosphorus elements entering the micro-arc oxidation (MAO) coatings developed on Ti-6Al-4V alloys, anodic coatings containing different zinc and phosphorus were fabricated using an orthogonal experiment of four factors with three levels in an electrolyte containing EDTA-ZnNa₂, KOH, and phytic acid. Surface morphology, element composition, chemical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017